Abstract
Quantum target detection is an emerging application that utilizes entanglement to enhance the sensing of the presence of an object. Although several experimental demonstrations for certain situations have been reported recently, the single-shot detection limit imposed by the Helstrom limit has not been reached because of the unknown optimum measurements. Here we report an experimental demonstration of quantum target detection, also known as quantum illumination, in the single-photon limit. In our experiment, one photon of the maximally entangled photon pair is employed as the probe signal and the corresponding optimum measurement is implemented at the receiver. We explore the detection problem in different regions of the parameter space and verify that the quantum advantage exists even in a forbidden region of the conventional illumination, where all classical schemes become useless. Our results indicate that quantum illumination breaks the classical limit for up to 40%, while approaching the quantum limit imposed by the Helstrom limit. These results not only demonstrate the advantage of quantum illumination, but also manifest its valuable potential of target detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.