Abstract

The problem of non-orthogonal state discrimination underlies crucial quantum information tasks, such as cryptography and computing protocols. Therefore, it is decisive to find optimal scenarios for discrimination among quantum states. We experimentally investigate the strategy for the optimal discrimination of two non-orthogonal states considering a fixed rate of inconclusive outcomes (FRIO). The main advantage of the FRIO strategy is to interpolate between unambiguous and minimum error discrimination by solely adjusting the rate of inconclusive outcomes. We present a versatile experimental scheme that performs the optimal FRIO measurement for any pair of generated non-orthogonal states with arbitrary a priori probabilities and any fixed rate of inconclusive outcomes. Considering different values of the free parameters in the FRIO protocol, we implement it upon qubit states encoded in the polarization mode of single photons generated in the spontaneous parametric down-conversion process. Moreover, we resort to a newfangled double-path Sagnac interferometer to perform a three-outcome non-projective measurement required for the discrimination task, showing excellent agreement with the theoretical prediction. This experiment provides a practical toolbox for a wide range of quantum state discrimination strategies using the FRIO scheme, which can significantly benefit quantum information applications and fundamental studies in quantum theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.