Abstract

Quantum secret sharing (QSS) is one of the basic communication primitives in future quantum networks which addresses part of the basic cryptographic tasks of multiparty communication and computation. Nevertheless, it is a challenge to provide a practical QSS protocol with security against general attacks. A QSS protocol that balances security and practicality is still lacking. Here, we propose a QSS protocol with simple phase encoding of coherent states among three parties. Removing the requirement of impractical entangled resources and the need for phase randomization, our protocol can be implemented with accessible technology. We provide the finite-key analysis against coherent attacks and implement a proof-of-principle experiment to demonstrate our scheme's feasibility. Our scheme achieves a key rate of 85.3 bps under a 35 dB channel loss. Combined with security against general attacks and accessible technology, our protocol is a promising candidate for practical multiparty quantum communication networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.