Abstract

This work describes the implementation of an experimental procedure to evaluate the reliability of Heterojunction Bipolar Transistors (HBT) on a GaAs substrate. It is based on the separation of aging test accelerating factors applied on two test vehicles: HBT and Transmission Line Model (TLM) structures associated with emitter, base and collector layers. To identify the physical origin of the degradation mechanism, analysis techniques are used: EDX, SEM and TEM observations for which a new sample preparation method has been worked out. Three different technological fabrication processes, are investigated: AlGaAs/GaAs double-mesa HBT, GaInP/GaAs self-aligned HBT and GaInP/GaAs fully planar HBT. These investigations have revealed two major failure mechanisms: the degradation of SiN–GaAs interface correlated with the increase of emitter-to-base leakage current of HBT submitted to combined bias and temperature stresses; the detachment of Ge/Mo/W emitter ohmic contact related to the base and collector current decrease for high level injection in forward regime. A 2D simulation has lead to modify the interface electrical properties to evaluate the impact of the two degradations on HBT dc characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call