Abstract

We investigated whether treatment with the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NA) and the free radical scavenger superoxide dismutase influences cerebral blood flow changes, brain edema, and cerebrospinal fluid pleocytosis in early experimental pneumococcal meningitis. Compared to untreated infected rats, superoxide dismutase given 3 hours after infection significantly attenuated the increase of brain water content, intracranial pressure, and cerebrospinal fluid white blood cell count, but did not modulate the increase in regional cerebral blood flow. N-Nitro-L-arginine treatment (5 mg/kg intravenously, followed by 5 mg/kg/hour) reversed the increase in regional cerebral blood flow; prevented an increase in brain water content, intracranial pressure, and cerebrospinal fluid nitrite concentrations; and reduced cerebrospinal fluid white blood cell count. With a closed cranial window preparation, N-nitro-L-arginine prevented pneumococci-induced dilatation of pial arterioles. When the effective dose was increased twofold, the effects of N-nitro-L-arginine became more pronounced but resulted in the death of 4 of 5 rats, probably due to hemodynamic side effects. In primary cultures of rat cerebral endothelial cells, nitrite concentrations increased after pneumococcal stimulation, which could be prevented by N-nitro-L-arginine and cycloheximide. These data suggest that (a) nitric oxide accounts for regional cerebral blood flow changes and pial arteriolar dilatation in the early phase of experimental pneumococcal meningitis; (b) both superoxide radical and nitric oxide are involved as mediators of brain edema and meningeal inflammation; and (c) cerebral endothelial cells can be stimulated by pneumococci to release nitric oxide presumably via the inducible nitric oxide synthase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.