Abstract
We conducted melting experiments on a low MgO (3.29 wt.%) basaltic andesite (54.63 wt.% SiO2) from Westdahl volcano, Alaska, at XH2O = 0.7–1 and fO2 ~ Ni–NiO, at pressures = 0.1–180 MPa and temperatures = 900–1,200 °C. We examine the evolution of the melt along a liquid line of descent during equilibrium crystallization at high H2O and fO2 conditions, starting from a high FeOt/MgO, low MgO basaltic andesite. Ti-magnetite formed on the liquidus regardless of XH2O, followed by clinopyroxene, plagioclase, amphibole, and orthopyroxene. We observe slight but significant differences in the phase stability curves between the XH2O = 1 and 0.7 experiments. Early crystallization of Ti-magnetite and suppression of plagioclase at higher pressures and temperatures resulted in strongly decreasing melt FeOt/MgO with increasing SiO2, consistent with a “calc-alkaline” compositional trend, in agreement with prior phase equilibria studies on basalt at similar H2O and fO2. Our study helps quantify the impact of small amounts of CO2 and high fO2 on the evolution of melts formed during crystallization of a low MgO basaltic andesite magma stored at mid- to shallow crustal conditions. Like the prior studies, we conclude that H2O strongly influences melt evolution trends, through stabilization of Ti-magnetite on the liquidus and suppression of plagioclase at high P–T conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.