Abstract

AbstractMelting relations of the basement lavas drilled from the Ontong Java Plateau during ODP Leg 192 were experimentally determined at 1150–1250°C and 0.1–190 MPa under the oxygen fugacity along the fayalite-magnetite-quartz (FMQ) and cobalt-cobalt oxide (CCO) buffers. The basement lavas were classified into two types according to phenocryst assemblage and whole-rock composition: one type is low in MgO (<8 wt%) and olivine + plagioclase + augite-phyric (Kwaimbaita type); and the other is rich in MgO (>8 wt%) and olivine-phyric (Kroenke type). One sample was chosen from each type as a starting material of the melting experiments. The experimental results demonstrate that the variations in phenocryst assemblage and whole-rock composition in the basement lavas can be modelled adequately by fractional crystallization processes in a shallow magma chamber (<6 km in depth). The experimentally determined mineral-melt equilibria, in combination with detailed petrographical investigation, revealed that the vast majority of phenocrysts are in equilibrium with their host magma composition, but some are not. The latter include unusually An-rich parts of plagioclase phenocrysts in the Kwaimbaita-type lavas. These An-rich parts probably crystallized in a mushy boundary layer along the wall of the magma chamber where the melt was relatively rich in H2O. Some olivine phenocrysts in the Kroenke-type lavas show reverse zoning, with core compositions that can be in equilibrium with the Kwaimbaita-type magmas. The cores of these olivine phenocrysts were most probably assimilated from a solidified pile of the Kwaimbaita-type lavas when the Kroenke-type magmas ascended through it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call