Abstract
In this work, a novel design of a real scale Scraped Surface Heat Exchanger (SSHE) for solar LTES has been developed and experimentally tested. The main issue in PCM heat exchangers is the growth of a solid layer at the heat transfer walls during the latent energy extraction/discharging, that lowers heat transfer. The removal of the solidified PCM through scraping increases the heat transfer rate with nearly constant heat flux. Those characteristics make it suitable for domestic hot water generation. Discharging tests have been performed in scraping and no scraping modes (SM and nSM). The heat release rate in SM has shown to be between two and three times higher than in nSM. Moreover, in SM there is a complete extraction of the available latent energy (11.9 MJ) in a short period, compared to nSM. Additionally, a performance comparison between the developed SSHE and those available in open literature has been done. The results of heat release density (4 kW/m2) and overall heat transfer coefficient (1000 W/m2K) have shown similar values, though the scraping mechanism, the rotational speed, the size and their energy capacity are different. The developed design is an appropriate technology to increase the efficiency in solar LTES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.