Abstract
For absorption cooling cycles using water as a refrigerant, H2O/LiCl mixtures are suitable for replacing conventional H2O/LiBr mixtures. In addition, membrane devices can be used to develop compact and lighter absorption systems, and they can operate with H2O/LiCl mixtures. The present paper describes an experimental evaluation of a membrane desorber/condenser operating at atmospheric pressure. Two operation modes were analyzed: continuous cycle operation and intermittent operation. For the first operation mode, the maximum desorption rate was 3.49 kg/h·m2, with a solution temperature of 90.3 °C and a condensation temperature of 25.1 °C. The lowest desorption rate value was 0.26 kg/h·m2, with a solution temperature of 75.4 °C and a condensation temperature of 40.1 °C. In the second mode, after three operating hours, the refrigerant fluid produced, per 1 m2 of membrane area, 7.7, 5.6, 4.3, and 2.2 kg, at solution temperatures of 90.3, 85.3, 80.4, and 75.4 °C, respectively. A one-dimension heat and mass transfer model is presented. The calculated values of desorption rate and outlet temperatures were compared with the experimental data; a square correlation coefficient of 0.9929 was reached for the desorption rate; meanwhile, for the outlet solution temperatures and the outlet cooling-water temperatures, a square correlation coefficient up to 0.9991 was achieved. The membrane desorber has the advantages of operating at atmospheric-pressure conditions, high condensation temperature, the ability to use different saline solution working mixtures, and different operation methods. These advantages can lead to new absorption systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.