Abstract

The current energy crisis, climate change and increased air conditioning demands have generated a need for developing technologies based on renewable energy sources. Foremost amongst the cooling technologies are the sorption technologies working on low grade heat that can be supplied by solar energy. Liquid desiccant technologies seem to be a promising option as these tend to have higher thermal COPs, lower regeneration temperatures, facilitate simultaneous cooling and ease of storage of concentrated desiccant that can be used during the nonsunshine hours. But few concerns like carryover of liquid desiccant in air require further investigations. The liquid desiccant system under study incorporates a double channelled exchanger for air to liquid desiccant heat and mass transfer. It provides a large surface area for air/desiccant contact and reduces the carryover as direct contact between desiccant and air is minimized unlike spray towers, packed bed and falling film designs. Desiccant is heated in a plate heat exchanger using hot water and then regenerated in a regenerator. The set-up comprises of a dehumidifier, along with a regenerator, a cooling tower, plate heat exchangers and a control unit. Experiments were conducted on the system using calcium chloride and lithium chloride as desiccants by varying parameters like inlet air conditions, hot water temperature and desiccant concentration in order to evaluate the performance of the system under different operating conditions. The performance of the system is presented in terms of moisture removal rates, dehumidifier and regenerator effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call