Abstract

Pure nickel was selected for a detailed investigation of the experimental parameters influencing grain refinement and microstructural evolution during processing by high-pressure torsion (HPT). Samples were examined after HPT using microhardness measurements, transmission electron microscopy and orientation imaging microscopy. Processing by HPT produces a grain size of ~170 nm in pure Ni, and homogeneous and equiaxed microstructures are attained throughout the samples when they are subjected to at least ~5 whole revolutions under applied pressures of at least ~6 GPa. For these conditions, the distributions of grain boundary misorientations are similar in the center and at the periphery of the samples. A simple model is proposed to explain the development of a homogeneous microstructure in HPT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.