Abstract

In dilute astrophysical plasmas, such as planetary nebulae and H II regions, strong lines appear that only have weak, if any, correspondence to the spectrum of laboratory light sources. Some of these are parity forbidden lines, i.e. emission from long-lived metastable states that cannot decay via normal electric dipole (E1) routes but only via the slower M1 and E2 transitions. The long lifetime of the upper levels and their sensitivity to collisions make the lines good diagnostics of the emitting plasma, but then the transition probability, or A-value, of these lines must be known.We report on a technique to experimentally determine A-values for forbidden lines using the method of combining the lifetime of the upper level with the branching fractions for the different decay channels. The lifetime is measured using the laser probing technique (LPT) on a stored ion beam. Since these lines are rarely produced in laboratory plasmas, we use astrophysical spectra to determine the branching fractions (BF). The lifetime and the BF then give the A-value, which is one quantity needed for modeling the spectrum of the plasma emitting the forbidden lines.The present measurements are performed within the FERRUM project, an international collaboration producing and evaluating transition probabilities for iron group element lines of astrophysical importance (Johansson P I S et al 2002 Physica Scripta T100 71)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.