Abstract

We experimentally realize a nonlinear quantum protocol on single-photon qubits with linear optical elements and appropriate measurements. The quantum nonlinearity is induced by post-selecting the polarization qubit based on a measurement result obtained on the spatial degree of freedom of the single photon which plays the role of a second qubit. Initially, both qubits are prepared in the same quantum state and an appropriate two-qubit unitary transformation entangles them before the measurement on the spatial part. We analyze the result by quantum state tomography on the polarization degree of freedom. We then demonstrate the usefulness of the protocol for quantum state discrimination by iteratively applying it on either one of two slightly different quantum states which rapidly converge to different orthogonal states by the iterative dynamics. Our work opens the door to employ effective quantum nonlinear evolution for quantum information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.