Abstract
Structural transparent material systems are critical for many military and civilian applications. Transparent armor systems can consist of a wide variety of glass laminate assemblies with polymeric bonding interfaces and backing as well as the inclusion of polycrystalline ceramic (AlON, spinel) and single crystals (sapphire) as front facing materials. Over the last 20 years as the threats have escalated and become more varied, the challenges for rapidly developing optimized threat specific transparent armor packages have become extremely complex. Ultimate failure of structural ceramics in impact events is a function of the temporal and spatial interaction of the macro-stresses at the macro-, micro- and nano-structural scale, including elastic and inelastic (plastic) deformation, crack nucleation, damage evolution and resulting failure from the macro-scale (top down) and/or from the nano-scale (bottom up). In order to accelerate the development of validated design and predictive performance models, a systematic series of experimental investigations have been carried out on various non-crystalline ceramics (glass), single crystal (sapphire) and polycrystalline ceramics (AlON). The Edge-on Impact (EOI) test coupled with a high-speed Cranz-Schardin film camera has been extensively used on a variety of monolithic and laminated glasses, AlON and crystallographically controlled sapphire single crystals to visualize and quantify stress wave, crack and damage propagation. A modified Kolsky bar technique instrumented with a high speed digital camera has been utilized in an unconfined and confined test sample mode to examine the dynamic deformation and failure of AlON undergoing uniaxial, high strain rate compression. Real time photography has clearly demonstrated the critical influence of defects and post mortem characterization of fragments resulting from these tests have revealed the influence of micro-deformational twining and cleavage down to the nano-scale. Finally, a brief summary of work using ultra-high-speed photography of the impact of conventional projectiles on glass and AlON will be presented. These experimental results will be absolutely critical to help evolve and validate existing models used in computer codes to simulate the impact performance of brittle materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.