Abstract

Nuclear magnetic resonance (NMR) imaging was used to observe the evolution of radial concentration and velocity profiles of initially well‐mixed concentrated suspensions of spheres in viscous Newtonian liquids undergoing flow between rotating concentric cylinders (wide‐gap, annular Couette flow). In Couette flow, particles migrate from the high shear‐rate region near the inner rotating cylinder to the low shear‐rate region at the outer wall. The particle concentration near the outer wall approaches maximum packing for randomly distributed spheres at steady state, and velocity profiles reveal that the suspension is almost stagnant in these regions. For unimodal suspensions of spheres, the shear‐induced migration of large particles results in concentric two‐dimensional, circular sheets of particles arranged in hexagonal close‐packed arrangements extending inward from the outer wall. This paper examines the functional dependence of particle migration in concentrated suspensions undergoing shear flow in a wid...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call