Abstract

Photonic waveguide arrays provide a simple and versatile platform for simulating conventional topological systems. Here, we investigate a novel one-dimensional (1D) topological band structure, a dimer chain, consisting of silicon waveguides with alternating self-coupling and inter-coupling. Coupled mode theory is used to study topological features of such a model. It is found that topological invariants of our proposed model are described by the global Berry phase instead of the Berry phase of the upper or lower energy band, which is commonly used in the 1D topological models such as the Su–Schrieffer–Heeger model. Next, we design an array configuration composed of two dimer patterns with different global Berry phases to realize the topologically protected waveguiding. The topologically protected propagation feature is simulated based on the finite-difference time-domain method and then observed in the experiment. Our results provide an in-depth understanding of the dynamics of the topological defect state in a 1D silicon waveguide array, and may provide different routes for on-chip lightwave shaping and routing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.