Abstract

Cobalt base superalloys are used extensively in applications requiring good wear, corrosion and heat resistance. The main goal of this study is to examine the effect of machining conditions (cutting speed, feed rate and depth of cut) on tool wear, chip morphology and cutting forces in symmetric face milling of cobalt base superalloy with physical vapour deposition coated and uncoated inserts. with the aim of achieving to achieve this goal, 90 milling experiments were carried out with different cutting speeds, feed rate and depth of cut under dry cutting conditions. The settings of machining parameters were determined by using general full factorial design method. Chip morphology, cutting forces and tool wear were compared by using PVD coated and uncoated hard metal inserts which are obtained dependent on feed rate, cutting speed and cutting depth. The cutting forces increase as the feed rate and depth of the cut increases, but cutting speeds’ effect on cutting forces has not been observed for symmetric face milling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.