Abstract
The growing successes in performing quantum control experiments motivated the development of control landscape analysis as a basis to explain these findings. When a quantum system is controlled by an electromagnetic field, the observable as a functional of the control field forms a landscape. Theoretical analyses have predicted the existence of critical points over the landscapes, including saddle points with indefinite Hessians. This paper presents a systematic experimental study of quantum control landscape saddle points. Nuclear magnetic resonance control experiments are performed on a coupled two-spin system in a $^{13}\mathrm{C}$-labeled chloroform $({}^{13}{\mathrm{CHCl}}_{3})$ sample. We address the saddles with a combined theoretical and experimental approach, measure the Hessian at each identified saddle point, and study how their presence can influence the search effort utilizing a gradient algorithm to seek an optimal control outcome. The results have significance beyond spin systems, as landscape saddles are expected to be present for the control of broad classes of quantum systems.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.