Abstract

We report experimental results from a study of nonlinear Thomson scattering of elliptically polarized light. Polarization-resolved radiation patterns of the scattered light are measured as a function of the elliptical polarization state of the incident laser light. The relativistic electron trajectory in intense elliptically polarized fields leads to the formation of unique radiated polarization states, which are observed by our measurements and predicted by a theoretical model. The polarization of Thomson scattered light depends strongly on the intensity of the incident light due to nonlinearity. The results are relevant to high-field electrodynamics and to research and development of light sources with novel capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.