Abstract

Realization and manipulation of parity-time (PT) symmetry in multidimensional systems are highly desirable for exploring nontrivial physics and uncovering exotic phenomena in non-Hermitian systems. Here, we report the first experimental observation of partial PT (pPT) symmetry in a cesium atomic gas coupled with laser fields, where a two-dimensional pPT-symmetric optical potential for probe laser beam is created. A transition of the pPT symmetry from an unbroken phase to a broken one is observed through changing the beam-waist ratio of the control and probe laser beams, and the domains of unbroken, broken, and non-pPT phases are also discriminated unambiguously. Moreover, we develop a technique to precisely determine the location of the exceptional point of the pPT symmetry breaking by measuring the asymmetry degree of the probe-beam intensity distribution. The findings reported here pave the way for controlling multidimensional laser beams in non-Hermitian systems via laser-induced atomic coherence, and have potential applications for designing new types of light amplifiers and attenuators

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call