Abstract

An electric current is passed through the interface of liquid gallium and aqueous electrolyte in a square cross-section cell under a background vertical magnetic field. The oscillation increment of surface waves is calculated from potential measurements at variable current strengths. The surface is also visually observed through transparent side walls. No growing surface waves occur for the Sele parameter as high as 1.5. Instead, a quasi-static surface deformation is caused by the rotation of the metal and electrolyte. The maximum height of this surface deformation increases approximately in proportion to the current. Figs 7, Refs 15.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.