Abstract

We demonstrate a maximum gain of 4.6 dB at a signal wavelength of 5.28 μm in a 4.1 μm resonantly pumped Pr3+-doped selenide-based chalcogenide glass fibre amplifier of length 109 mm, as well as a new signal excited-stated absorption (ESA) at signal wavelengths around 5.5 μm. This work to the best of our knowledge is the first experimental demonstration of gain at mid-infrared (MIR) wavelengths in a Pr3+-doped chalcogenide fibre amplifier. The signal ESA of the fibre is attributed to the transition 3H6 → (3F4, 3F3) after the pump ESA (3H5 → 3H6) at a pump wavelength of 4.1 μm, which absorbs the MIR signal at wavelengths of 5.37, 5.51 and 5.57 μm, and so spoils the amplifier’s performance at these wavelengths. Thus, this signal ESA should be suppressed in a resonantly pumped Pr3+-doped selenide-based chalcogenide fibre amplifier.

Highlights

  • Mid-infrared (MIR) laser sources are of great demand in the fields of biomedical sensing, environmental monitoring and free space communication[1]

  • The new InF3 host glass has further reduced the phonon energy to 509 cm−114, it remains relatively high for laser operation at wavelengths beyond 4 μm, which becomes the main challenge of the RE ion doped fluoride glass fibre lasers

  • We have numerically investigated the resonantly pumped Pr3+-doped chalcogenide glass MIR fibre amplifier, which considered the influence of excited-state absorption (ESA) on the first excited-state 3H525

Read more

Summary

Introduction

Mid-infrared (MIR) laser sources are of great demand in the fields of biomedical sensing, environmental monitoring and free space communication[1]. We report a maximum gain of 4.6 dB at a signal wavelength of 5.28 μm in a 4.1 μm resonantly pumped Pr3+-doped chalcogenide selenide-based glass fibre amplifier.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call