Abstract

The master curve method described in ASTM E1921 provides a tool for using small specimens such as sub-sized CT and PCVN specimens for standard fracture toughness testing. However, a direct measurement of the load-line displacement of small specimens is not practical for standard fracture toughness tests. Mostly, the front-face displacement or the crack mouth opening displacement can be measured and converted into the load-line displacement by using an analytical relationship proposed by several investigators. Since those relationships were deduced from numerical calculations of the loaded specimens, experimental deviations may occur because of specimen indentation, rotation and arm bending during an actual testing. It is clear that the determination of fracture toughness is influenced by the accuracy of the estimation of load-line displacement as well as the load measurement. In this study, the relationship between the load-line displacement and the front-face displacement or the crack mouth displacement was investigated experimentally by using a series of CT and Bend specimens modified to measure the two displacements simultaneously during a single test. The results showed that the front-face measurement of CT specimens may result in about 3% more conservative estimate of fracture toughness. In the case of bend specimens, the crack mouth opening displacement measurement may result in about 7% non-conservative estimate of fracture toughness than the load-line measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call