Abstract

In this experimental study, the flow instabilities within a semi-closed two-phase natural circulation loop were examined, with an emphasis placed on the role of the expansion-tank-line resistance. Six different modes of loopwise natural circulation were identified: the single-phase natural circulation, periodic two-phase natural circulation with a nonboiling period between the cycles, two-phase continuous circulation (stable circulation), and three other modes of the two-phase natural circulation characterized by different ranges of the cyclic period. The results were also shown in the instability map in the plane of the heat flux and the heater-inlet subcooling. When the frictional resistance at the expansion-tank line becomes larger, the circulation becomes stable, especially at the high heat-flux and high inlet-subcooling conditions, and, as a whole, the stable operation region becomes larger in the instability map. Similarly, the longer expansion-tank line stabilizes the system. However, unlike the analytical prediction, the excursive instability was not identified with the semi-closed loop due to the flow restriction at the expansion-tank line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call