Abstract
The concept of exceptional point (EP) is demonstrated experimentally in the case of a simple mechanical system consisting of two linearized coupled pendulums. Exceptional points correspond to specific values of the system parameters that yield defective eigenvalues. These spectral singularities which are typical of non-Hermitian system means that both the eigenvalues and their associated eigenvectors coalesce. The existence of an EP requires an adequate parameterization of the dynamical system. For this aim, the experimental device has been designed with two controllable parameters which are the length of one pendulum and a viscous-like damping which is produced via electromagnetic induction. Thanks to the observation of the free response of the coupled pendulums, most EP properties are experimentally investigated, showing good agreements with theoretical considerations. In contrast with many studies on EPs, mainly in the field of physics, the novelty of the present work is that controllable parameters are restricted to be real-valued, and this requires the use of adequate search algorithms. Furthermore, it offers the possibility of exploiting the existence of EPs in time-domain dynamic problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.