Abstract
The residual resistivity, Hall effect, and magnetization of Co2YSi (Y = Ti, V, Cr, Mn, Fe, Co, Ni) Heusler alloys were considered at T = 4.2 K and in fields up to 100 kOe. It is shown that as the number of valence electrons z ranges from 26 to 32, significant changes in the residual resistivity ρ0, magnetization Ms, sign and magnitude of the normal R0 and anomalous RS Hall effect coefficients are observed during the transition from Co2TiSi to Co2NiSi. It is established that there is a clear correlation between the values ρ0, R0, RS and Ms, depending on the number z, which can be associated with the appearance of a half-metal ferromagnetic state and/or spin gapless semiconductor. As z changes, the anomalous Hall effect coefficient has a power-law dependence on the residual electrical resistivity with an exponent of k = 3.1, which diverges with existing theories but agrees well with the experimental data obtained earlier for similar half-metallic ferromagnetic Heusler alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.