Abstract
We examine the radiation emitted by high-energy positrons channeled into silicon crystal samples. The positrons are modeled as semiclassical vector currents coupled to an Unruh-DeWitt detector to incorporate any local change in the energy of the positron. In the subsequent accelerated QED analysis, we discover a Larmor formula and power spectrum that are both thermalized by the acceleration. Thus, these systems explicitly exhibit thermalization of the detector energy gap at the celebrated Fulling-Davies-Unruh (FDU) temperature. Our derived power spectrum, with a nonzero energy gap, is then shown to have an excellent statistical agreement with high-energy channeling experiments and also provides a method to directly measure the FDU temperature. We also investigate the Rindler horizon dynamics and confirm that the Bekenstein-Hawking area-entropy law is satisfied in these experiments. As such, we present the evidence for the first observation of acceleration-induced thermality in a nonanalog system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.