Abstract

Dissipative phase transitions are a characteristic feature of open systems. One of the paradigmatic examples for a first order dissipative phase transition is the driven nonlinear single-mode optical resonator. In this work, we study a realization with an ultracold bosonic quantum gas, which generalizes the single-mode system to many modes and stronger interactions. We measure the effective Liouvillian gap of the system and find evidence for a first order dissipative phase transition. Due to the multi-mode nature of the system, the microscopic dynamics is much richer and allows us to identify a non-equilibrium condensation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call