Abstract

We examine the dynamics of laser droplet generation that is dependent on the detachment pulse power. In the absence of the detachment pulse, undulating pendant droplets are formed at the end of a properly fed metal wire due to the impact of the primary laser pulse that induces melting. Eventually, these droplets detach, i.e. overcome the surface tension, because of their increasing mass. We show that this spontaneous dripping is deterministically chaotic by using a positive largest Lyapunov exponent and a negative divergence. In the presence of the detachment pulse, however, the generation of droplets is fastened depending on the pulse power. At high powers, the spontaneity of dripping is completely overshadowed by the impact of the detachment pulse. Still, amplitude chaos can be detected, which similarly as the spontaneous dripping, is characterized by a positive largest Lyapunov exponent and a negative divergence, thus indicating that the observed dynamics is deterministically chaotic with an attractor as solution in the phase space. In the intermediate regime, i.e. for low and medium detachment pulse powers, the two chaotic states compete for supremacy, yielding an intermittent period-doubling to amplitude chaos transition, which we characterize by means of recurrence plots and their properties. Altogether, the transition from spontaneous to triggered laser droplet generation is characterized by a chaos-to-chaos transition with an intermediate dynamically nonstationary phase in-between. Since metal droplets can be used in various industrial applications, we hope that the accurate determination of the dynamical properties underlying their formation will facilitate their use and guide future attempts at mathematical modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call