Abstract
The spherical pressure hull used in the manned cabin of deep-sea submersibles endures low-cycle fatigue problems during the process of cyclic submergence and recovery, but fatigue testing on its full-scale model is difficult to conduct. To approximate the problem, the paper proposed the design of an L-type equivalent welding joint to simulate the status of the strengthened part of the spherical pressure hull under a certain cyclic axial pressure history. The design principle of the equivalent welding joint is to ensure that the stress ratio between inner and outer surface and the distribution of the simulated test piece should be similar to or smaller than the actual stress distribution characteristics in the critical zone of the spherical hull for conservative consideration. The angle of the L-type joint is 175° in the present study, at which the stress on the outside is at the turning point from compressive stress to tensile stress. The fatigue experiment of the equivalent welding joint is conducted with measurements of crack growth and residual stresses. Multiple cracks are observed in the vicinity of the weld, which grows showing a typical low-cycle fracture morphology. The three-dimensional finite element modelling for the equivalent welding joint with prefabricated notch and the same weld zone shape with its tested piece is carried out. An improved crack growth model proposed by the author’s group, considering multiple factors, is adopted for crack growth calculation and compared with experimental results, which shows satisfactory agreement. The finite element modelling based on the pre-designed L-type joint combined with the improved crack growth rate model can be applied as a simplified method to simulate the fatigue life of the spherical pressure hull.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.