Abstract

The characterization of the adhesive of bonded assemblies under combined and dynamic loading cases appears to be crucial for the development of the future structures dedicated to the transport industry. To date, most of the tests on adhesive joints are dedicated to comparative studies and only a few ones to characterization. Among these, the stress concentration-free bonded Arcan Tensile/Compression-Shear test specimen (Arcan TCS) developed by Créac’hcadec et al. allows to characterize the adhesive of bonded joints under combined quasi-static loading cases while minimizing the edge effects. This paper deals with an extension of the use of this specimen under dynamic loadings.In a first part, an experimental study of the Arcan TCS device under drop weight conditions is made. The mechanical behaviour of the adhesive appears to be non-linear and clearly dependent of the strain rate. Also, stress-strain curves highlight a significant influence of tests conditions. In particular, the way the kinetic energy is transmitted by the falling mass to the testing device plays a significant role on the vibrational behaviour and the loading rate of the specimen.In a second part, a dedicated finite element model is built under the plane stress and elastic assumptions. Results extracted from this numerical study are in agreement with several experimental observations. Moreover, they allow a better understanding of the loading seen by the adhesive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.