Abstract

The transport of granular material often generates severe damage. Understanding the correlation between the friction coefficient, particle geometry and wear mechanisms is of primary importance for materials undergoing abrasive wear. The aim of this study is to investigate the effect of particle geometry on wear mechanisms and the friction coefficient. Numerical and analytical simulations and experimental results have been compared. The process to be studied is the scratch made by a rigid cone with different attack angles on a 5xxx aluminium alloy (Al–Mg) flat surface. A scratch test was used and the wear mechanisms were observed for different attack angles. A numerical study with a finite element code was made in order to understand the effect of attack angle on the friction coefficient. The contact surface and the friction coefficient were also studied, and the results compared to the Bowden and Tabor model. The superposition of the numerical, analytical and experimental results showed a better correlation between the wear mechanisms and the friction coefficient. It also showed the importance of the model hypothesis used to simulate the scratch phenomenon. To cite this article: S. Mezlini et al., C. R. Mecanique 333 (2005).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call