Abstract

In the paper presented a study of the fracture process of explosive welded layered material AA2519-AA1050-Ti6Al4V (Al-Al-Ti laminate) at ambient (+20 °C) and reduced (−50 °C) temperatures. The tensile tests and fracture toughness tests were conducted for both types specimens made of base materials plates and of laminated plate. During tensile tests performed on flat specimens the signals of loading force (P) and specimen extension (uext) were recorded. The signals of loading force (P), specimen deflection (udef) and the crack mouth opening displacement (COD) were recorded while performing the tests on fracture toughness of materials on SENB type specimens. The breakthroughs of the tested specimens were observed by scanning electron microscope (SEM).The results obtained during the experimental tests indicate the complicated nature of the cracking process of specimens from the Al-Al-Ti laminate. The deviation from linearity was observed during loading on the sections where it should be linear. There were also slightly decreases in the force value during the load. During macro observation of the fractured surfaces of SENB specimens, delamination cracks between the Al and Ti layers are clearly visible. The size of these cracks increases as the test temperature decreases. The SEM observations clearly indicate that the delamination crack is formed in the AA1050 layer joining the Ti6Al4V and AA2519 base materials. Precise observation by SEM allowed to establish that the development of a delamination crack begins with different type of particles fracture and material discontinuous in narrow strip (20–40 mm) near at Ti6Al4V material. Then the delamination crack develops in the layer of AA1050 material according to a shear mechanism.In order determine the stress and strain distributions in tested specimens the they numerical models were developed and simulation of loading were performed by ABAQUS program. The results of stress and strain distributions obtained clearly shows on large differences they values in the different layers of the laminate. Maximal differences of stress levels occurs between layers Ti6Al4V and AA1050 materials. Due to the fact that the material of the connecting layer (AA1050) has a low level of yield strength, a very high level of plastic strain occurs.Based on the results obtained during the experimental tests, SEM observation of fracture surfaces and numerical calculations, it can be concluded that the weakest area in the tested laminate is the connecting layer AA1050. Namely is it, a thin strip between AA1050 and Ti6Al4V, which consists of metal base particles, intermetallic compounds, their oxides and discontinuities of the material in form of voids.When using this type of laminate, special attention should be paid to the strength of the AA1050 bonding layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call