Abstract
Previous experience in designing and monitoring bioclimatic buildings in central Argentina suggests that their thermal behavior is a matter of concern and that further research is needed. Thus, the objectives of this work are: to describe the design and the post-occupancy evaluation of a new non-domestic solar building in a continental semiarid region of central Argentina (37°38′ latitude S, 63°34′ longitude, 175m above sea level), to analyze the building's hygrothermal and energy performance, and to estimate the PMV and PPD. The design guidelines were: to minimize the consumption of conventional energy in thermal-lighting conditioning, to use traditional technology, to maximize the thermal comfort, and to reach an extra-cost lower than 10%. The post-occupancy monitoring of the building was performed along one complete year (August 9th 2011–August 18th 2012). Data-loggers were installed in each functional area to sense the indoor temperature and relative humidity at time steps of 10min. A meteorological station was installed near the building. The experimental results showed that during winter the average temperature in the areas of permanent use was 20.3°C (average outdoor temperature: 10.1°C) and the heating energy consumption was around 73.5kWh/m2. During summer the average indoor temperature in the building was 26.9°C, 1.7°C below the outdoor temperature average (28.6°C); cooling systems were turned on when the indoor temperature reached 28°C, at approximately 11:30 AM, when the outdoor air temperature exceeded 30°C. Mechanical cooling consumed around 59% of the daily electricity consumption. The PDD results obtained for winter and summer representative days meet the requirements of ISO Norm 7730. Heating and cooling energy saving was around 63% and 76.5% respectively. The monitoring showed that the thermal behavior and energy performance met the expectations of both designers and users, and it is considered satisfactory and promising for low-energy consumption buildings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.