Abstract

For certain industrial applications, the stability of protein oligomers is important. In this study, we demonstrated an efficient method to improve the thermal stability of oligomers using the trimeric protein chloramphenicol acetyltransferase (CAT) as the model. We substituted all interfacial residues of CAT with alanine to detect residues critical for oligomer stability. Mutation of six of the forty-nine interfacial residues enhanced oligomer thermal stability. Site saturation mutagenesis was performed on these six residues to optimize the side chains. About 15% of mutations enhanced thermal stability by more than 0.5 °C and most did not disrupt activity of CAT. Certain combinations of mutations further improved thermal stability and resistance against heat treatment. The quadruple mutant, H17V/N34S/F134A/D157C, retained the same activity as the wild-type after heat treatment at 9 °C higher temperature than the wild-type CAT. Furthermore, combinations with only alanine substitutions also improved thermal stability, suggesting the method we developed can be used for rapid modification of industrially important proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call