Abstract

Abstract Spatial neglect is a debilitating neuropsy­chological disorder that is characterized by an impaired or lost ability to explore the space contralateral to the lesion and to re­act to stimuli presented on this side. Lesion sites that have been implicated in spatial ne­glect form a widely distributed network con­sisting of a number of cortical (i.e., frontopa­rietal) and subcortical (i.e., thalamic) areas that are activated during attention and vi­suomotor tasks in healthy individuals. While detailed understanding of the brain circuits and mechanisms involved in spatial neglect is a prerequisite for the development of ef­fective therapies, this has proven to be dif­ficult in human patients because of the size and variability of lesion sites. Therefore, ex­perimental models where predefined brain regions can be systematically inactivated are of great advantage. Neglect models have been developed in nonhuman primates in whom it is possible to pharmacologically in­activate small brain regions and in humans by means of noninvasive stimulation/inacti­vation methods such as transcranial magnet­ic stimulation. In this article, we discuss theo­ries about the mechanisms of spatial neglect such as the hemispheric imbalance model and the supporting experimental evidence, with an emphasis on imaging experiments that have explored the effects of lesions on dynamic brain activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.