Abstract

Traditionally, performing an experimental modal analysis of a building/structure required instrumenting the structure with a spatially distributed array of accelerometers or strain gages. Alternatively, a laser doppler vibrometer would have to be scanned across the structure of interest in a sequential manner to measure structural response. Recently, researchers at LANL developed a technology that combines the theory of structural dynamics with computer vision that provides the capability to characterize structural dynamics at very high spatial density using only an imager. With this newfound success at the macro‐scale, we have exploited this novel technology to a whole new scale‐to studying the basic structure of life itself, the human cell. We hypothesize that this new technology and novel application will provide a significantly better understanding of how stiffness and mass distribution changes in a cell as it undergoes epithelial‐mesenchymal transition, and in identifying its associated EMC biochemical cues, highlight potential therapeutic targets. For the first time it should be possible to measure the high‐resolution mode shapes of cells; given that all cells undergoing cancer metastasis experience a breakdown in the cytoskeleton, this work will enable groundbreaking advances. It is imperative to highlight, that we are only beginning to understand the relationship between biophysical properties of cells and their potential to regulate tumorigenesis and motility. This knowledge could be used to provide verification and validation of finite element models of cellular structure. This work will represent the first time that expertise in experimental structural dynamics will be brought to bear on the problem of characterizing the structural dynamics of cells at high spatial resolution, which is novel and unique on its own. When successful, this new technology could be used to couple the biophysical cues associated with other detrimental human pathologies.This abstract is from the Experimental Biology 2019 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.