Abstract

Knowledge of the acoustic attenuation characteristics of the chest wall is necessary to estimate the acoustic exposure at the pleural surface during lung ultrasound and is useful in the prediction of bio-effects (e.g., pulmonary capillary hemorrhage) and the development of safe, effective lung imaging. Currently, this property is not well characterized in humans. The aim of this work was to characterize ultrasonic attenuation in human chest wall such that the ultrasound exposures of the lung can be estimated for clinically relevant conditions. In this study, we experimentally measured ultrasound transmitted through the intercostal tissue of 15 human cadaver chest wall samples relative to ultrasound transmitted through saline to determine attenuation coefficients for each sample. A GE Vivid 7 diagnostic ultrasound machine (GE Vingmed, Horten, Norway) and 3 S and 5 S phased array probes were used at center frequencies from 1.6 to 5 MHz. The chest wall samples varied in thickness from 2.3–5.5 cm with a median thickness of 3.8 cm. The frequency-normalized attenuation coefficient was approximately 1.44 dB/cm/MHz based on a linear best fit through all attenuation measurements. Attenuation characteristics varied appreciably between samples, and the sample-averaged linear attenuation coefficient was 1.43 ± 0.32 (mean ± standard deviation) dB/cm/MHz. This attenuation is higher than that previously measured in mammalian chest wall samples (1.1–1.3 dB/cm/MHz for mice and rats) and is much greater than that used by the mechanical index (0.3 dB/cm/MHz). Mechanical index values calculated using saline values de-rated by 0.3 dB/cm/MHz were up to 1.2 MPa/MHz1/2 greater than those calculated using the measured through-tissue ultrasound waves. We conclude that the mechanical index overestimates exposures for lung ultrasound and thus may not be an appropriate dosimetry metric for pulmonary ultrasound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call