Abstract
ABSTRACTA previous dislocation model analysis predicts that nano-scale contacts of surface steps induce nucleation of dislocations leading to pro-load and anti-load dislocation segregation near the contact surface. Such dislocation segregation generates a sub-layer of tensile residual stress in a much thicker layer of compressive residual stress near the surface. The sub-layer thickness is expected to be about 50 to 100 times the step height. In order to verify the predictions of the model analysis, experiments are carried out on polycrystalline aluminum surface to determine the existence of the tensile sub-layer. The variation of the residual stress along the thickness direction is measured using a newly developed high sensitivity curvature-measurement interferometer. The interferometer measures the curvature change of the back surface of a plate specimen of about 1.9 mm thickness while the contact-loaded front surface is chemically etched. The residual stress distribution measured with sub-nanometer spatial resolution is compared with analytical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.