Abstract

Herein, we report on the experimental measurements for estimated relative mobility shifts caused by changes in mass distribution from isotopic substitutions in isotopologues and isotopomers with high-resolution cyclic ion mobility separations. By utilizing unlabeled and fully labeled isotopologues with the same isotopic substitutions (i.e., 2H or 13C), we created a highly precise mobility scale for each set analyzed to determine the magnitude of such mass distribution shifts and thus calculate estimated deviations from expected, theoretical reduced mass contributions. We observed relative mobility shifts in various isotopologues (e.g., hexadecyltrimethylammonium, sucrose, and palmitic acid species) that deviated from reduced mass theory, according to the Mason-Schamp relationship, ranging in estimated magnitude from ∼0.007% up to ∼0.1% in relative mobility. More interestingly, it was found that two deuterated palmitic acid isotopomers also differed by ∼0.03% from one another in their respective relative mobility shifts. Our results are the first report of isotopologue and isotopomer separations on a commercially available cyclic ion mobility spectrometry-mass spectrometry platform. We envision that our presented mobility scale methodology will have broad applicability in studying the effect of mass distribution changes from isotopic substitutions in other biomolecules and help pave the way for the improvement of ion mobility theory and collision cross section calculators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call