Abstract

In order to avoid propagation nonlinearities (Kerr effect, Raman and Brillouin scattering) and optical damage, nanosecond high power lasers such as the Laser MegaJoule (LMJ) amplify quasi-monochromatic pulses. But they generate a static speckle pattern in the focal spot. This speckle pattern needs to be smoothed in order to lower high intensity peaks which are detrimental during the propagation and the interaction with the plasma in the target. Different techniques are implemented to smooth the intensity nevertheless all high power lasers carry at least smoothing by spectral dispersion. It consists in broadening the spectrum through a phase modulator and focusing the different wavelengths at slightly different positions using a diffractive element such as a grating. In the temporal domain, it has been theoretically shown that the pulse power is thus filtered between near field and far field [1, 2]. The filtering allows techniques such as “picket fence” to increase conversion efficiency [1] and reduces detrimental effects of unwanted intensity distortions called FM-AM conversion [2, 3]. Here, to the best of our knowledge we show the first experimental measurement of the frequency transfer function of this filtering. Measurements are in perfect agreement with the numerical calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.