Abstract

This article presents an experimental test and a program to empirically fit experimental data for the horizontal flux of wind-blown sand passing through a unit area along a vertical direction per unit time. The experimental data for the sand flow flux as a function of the height for naturally mixed sands, which were chosen from a sand dune at the southeastern edge of the Tengger desert, were measured with a sand collector in a field wind tunnel. On the basis of the experimental data and a least squares method, a fitting program is proposed here and, further, an explicit form of an empirical formula varying with height and axial wind velocity or friction velocity for the flux structure of the sands is gained. After that, we obtain an explicit form of the empirical equation for the measurement of streamwise sand transport per unit width and unit time by integrating the empirical formula for sand flux along the height direction and considering the contribution of sand creep. Finally, we evaluate the effectiveness of the predictions of some equations, especially the well-known Bagnold equation and Kawamura equation, for predicting streamwise wind-sand transport using the empirical equation obtained for mixed sands. The results show that the predictions from Bagnold's equation in the region of friction velocity u(*)>0.47 m/s and Kawamura's equation in the region u(*t)<or=u(*)<0.35 m/s are effective. Meanwhile, the measurement results given from the empirical equation smoothly transit from Kawamura's prediction to Bagnold's prediction as the friction velocity increases in the range 0.35 m/s<u(*)<0.47 m/s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call