Abstract

The light krypton isotopes were studied in a series of Coulomb excitation experiments using radioactive beams at GANIL. The static quadrupole moments found in these experiments give firm experimental evidence for the shape coexistence scenario that is based on theoretical calculations and on the systematics of low-lying excited 0+ states. The experimental results are interpreted within a phenomenological two-band mixing model. Configuration mixing calculations based on triaxial Hartree-Fock-Bogolyubov calculations with the Gogny D1S effective interaction have been performed and compared to experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.