Abstract

AbstractThis article describes a new approach to characterize the deformation response of polycrystalline metals using a combination of novel micro-scale experimental methodologies. An in-situ scanning electron microscope (SEM)-based tension testing system was used to deform micro-scale polycrystalline samples to modest and moderate plastic strains. These tests included measurement of the local displacement field with nm-scale resolution at the sample surface. After testing, focused ion beam serial sectioning experiments that incorporated electron backscatter diffraction mapping were performed to characterize both the internal 3D grain structure and local lattice rotations that developed within the deformed micro-scale test samples. This combination of experiments enables the local surface displacements and internal lattice rotations to be directly correlated with the underlying 3D polycrystalline microstructure, and such information can be used to validate and guide further development of modeling and simulation methods that predict the local plastic deformation response of polycrystalline ensembles.

Highlights

  • Many structural components are fabricated from polycrystalline materials, and the desire to both optimize the performance and extend the lifetime of metallic alloys has fostered the development of advanced micromechanical modeling and simulation tools that can accurately predict the deformation response of polycrystalline ensembles

  • Micro-scale test volumes are amenable to 3D serial sectioning in focused ion beam-scanning electron microscopes (FIB-SEM), and performing such experiments while incorporating electron backscatter diffraction (EBSD) mapping allows for capturing the post-deformation microstructure, including local lattice rotations [24,25,26,27]

  • In the present study, we demonstrated a new methodology for generating high-fidelity mechanical test data sets combined with explicit 3D microstructure representation of the entire test specimen, with the intent to couple this data to simulations for model validation and development

Read more

Summary

Introduction

Many structural components are fabricated from polycrystalline materials, and the desire to both optimize the performance and extend the lifetime of metallic alloys has fostered the development of advanced micromechanical modeling and simulation tools that can accurately predict the deformation response of polycrystalline ensembles. Micro-scale test volumes are amenable to 3D serial sectioning in focused ion beam-scanning electron microscopes (FIB-SEM), and performing such experiments while incorporating EBSD mapping allows for capturing the post-deformation microstructure, including local lattice rotations [24,25,26,27].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call