Abstract
Electron(s) capture in highly charged ions collision with atoms and molecules is a fundamental process related to the electron transition between bound states belongs to two atomic-centers. The X-ray emission following electron capture is important for X-ray astrophysical modeling, fusion plasma diagnosing, and ion irradiated biophysics. Over past decades, momentum-imaging cold-target recoil ion momentum spectroscopy is one of significantly developed techniques and has been widely applied to measure the quantum state-selective population in electron(s) capture processes. Based on the cold target recoil ion momentum spectroscopy mounted at the 150 kV highly charged ion platform in Fudan University, the state-selectivity of double electron capture in 1.4-20 keV/u Ar<sup>8+</sup> on He collision was measured, and the relative cross sections of the 3<i>l</i>3<i>l</i>’to 3<i>l</i>7<i>l</i>’ double excited states were obtained. It is found that with the increase of collision energy, more quantum state-selectivity channels are open in the double electron capture (DEC) of Ar<sup>8+</sup>-He collision. It is also found that the relative cross section of the quantum state population is strongly dependent on the collision energy of the projectile ion. This present measurement not only enriches the state-selective cross-section repository and collision dynamics for highly charged ion charge exchange processes, but also provides experimental benchmarks for the available theoretical calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.