Abstract

Radiation dose is an important performance indicator of a dedicated breast CT (DBCT). In this paper, the method of putting thermoluminescent dosimeters (TLD) into a breast shaped PMMA phantom to study the dose distribution in breasts was improved by using smaller TLDs and a new half-ellipsoid PMMA phantom. Then the weighted CT dose index (CTDIw) was introduced to average glandular assessment in DBCT for the first time and two measurement modes were proposed for different sizes of breasts. The dose deviations caused by using cylindrical phantoms were simulated using the Monte Carlo method and a set of correction factors were calculated. The results of the confirmatory measurement with a cylindrical phantom (11 cm/8 cm) show that CTDIw gives a relatively conservative overestimate of the average glandular dose comparing to the results of Monte Carlo simulation and TLDs measurement. But with better practicability and stability, the CTDIw is suitable for dose evaluations in daily clinical practice. Both of the TLDs and CTDIw measurements demonstrate that the radiation dose of our DBCT system is lower than conventional two-view mammography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.