Abstract

Abstract Hundreds of millions of Air conditioning (AC) systems are produced each year. Many of them, especially small AC appliances, use rotary compressors as the system’s heat pump due to their simple structure and high efficiency in a small system. Lubricant oil is used in the rotary compressor to lubricate the moving parts, such as the crankshaft and the rolling piston, and to seal the clearance between the sliding parts, e.g., the clearance between the rolling piston and the cylinder, and the vane and the cylinder. As the compressed refrigerant vapor is discharged from the cylinder through the discharge port, part of lubricant oil in the cylinder would be carried by the vapor and atomize into small droplets in the lower cavity during the discharge process, which is complicated and highly-coupled. Some of these oil droplets would ultimately be exhausted from the compressor and enter other parts in the system, reducing the compressor reliability and deteriorating the heat transfer of the condenser and the evaporator in the system. Our previous research studied the atomization of the lubricant oil during the discharge process in the compressor’s lower cavity. However, the oil droplets’ behavior downstream of the lower cavity is unknown. Thus, studying the oil droplets’ behavior after passing through the rotor/stator can help understand how the rotor/stator would affect the droplet size distribution and movement, thus controlling the flow rate of escaped oil droplets. In this study, a hot gas bypass test rig is built to run a modified rotary compressor with sapphire windows right above the rotor/stator. The oil droplets’ size distribution and movement along the radial direction are obtained at the shaft’s rotating frequency of 30 and 60 Hz by shadowgraph. It is found that droplet size at 30 and 60 Hz varies little in the inner region of the rotor/stator clearance and would increase sharply above the clearance and keep increasing in the outer region of the clearance. More importantly, droplet velocity has a downward velocity component at the inner region and an upward velocity component at the outer region of the rotor/stator clearance. With the result of droplet size distribution and droplet velocity above the rotor/stator, we propose the model of the oil droplet’s path above the rotor/stator, which can be understood as the coupling of a swirling jet and a rotating disk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call