Abstract

The β decays of atomic nuclei refer to the transformation that the nuclei emit a β particle or capture an electron. The accurate measurements of the β transition strength functions Sβ(E) are of great significance in exploring the structure of unstable nuclei, revealing the process of stellar nucleosynthesis and also verifying the β decay theories. Experimentally, one way to determine the β transition strength is to directly measure the beta decay product using β-γ coincidence technique and/or total absorption spectroscopy. This method can give the transition information within the Qβ window. Another method to obtain the β decay strength is via the charge exchange reactions performed at the intermediate energy region (100~400 MeV/u), such as (p, n) or (3He, t). This is done by a high-precision measurement of the differential cross section. This method allows to access the transition strength that beyond the Qβ window, however, it is restricted by the beam intensity, and as a consequence hard to perform a systematical study of unstable nucleus with low yields. In view of this, in this paper we proposes a systematic measurement of the total charge exchange reaction cross section of the unstable nuclei. Combined with the well developed nuclear reaction theory, this method may set a constrain to the summed strength of the Gamow-Teller transition of the unstable nuclei within the proton separation threshold. Moreover, we introduce briefly the relevant work that has been carried out and planned.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call