Abstract

Airborne dust deposition on a large number of energy devices would cause serious efficiency and lifetime reduction, such as solar photovoltaic panels, heat exchanger surfaces and fan blades. Mechanicalor manual cleaning using water is still the main method of mitigating dust deposition damage on theserelated energy equipment, which is commonly expensive and frequent. As a kind of self-cleaningmaterial,super–hydrophobic coating may become a new effective way to mitigating the dust deposition issue. Super–hydrophobic coatings with low surface energy and unique micro-nano secondary structure can significantly reduce dust deposition rate. However, mechanism of dust deposition on super-hydrophobic surfaces remains unclear. Thus it is difficult to develop high performance self-cleaning coating. This paper aims to investigate dust deposition behaviors and mechanisms on super-hydrophobic surface by experimental measurement and numerical simulation. Lattice Boltzmann Method-Discrete Particle Method (LBM–DPM) will be developed to predict dust particle deposition process including settling, collision adhesion and rebound behaviors. The mechanisms and interactions between coating surface energy, particle characteristics, particle incident velocity and particle adhesion or rebound behavior will be studied carefully. The findings and results may be useful to guide the development of high performance self-cleaning super– hydrophobic coating.

Highlights

  • $LUERUQH GXVW GHSRVLWLRQ RQ WKH VXUIDFHV RI HQHUJ\ GHYLFHV ZRXOG FDXVH VHULRXV SUREOHPV LQ RXU GDLO\ OLIH )RU H[DPSOH JODVV LV ZLGHO\ XVHG LQ VRODU V\VWHP WR SURWHFW WKH LQWHUQDO HTXLSPHQW 7KH VSHFWUDO WUDQVPLWWDQFH RI WKH FRYHULQJ JODVV FDQ VLJQLILFDQWO\ LQIOXHQFH WKH 39 RXWSXW SRZHU HIILFLHQF\ >@ +RZHYHU GXVW GHSRVLWLRQ RQ WKH VRODU FRYHULQJ JODVV FRXOG UHIOHFW DQG DEVRUE WKH VXQOLJKW ZKLFK ZRXOG JUHDWO\ UHGXFH WKH WUDQVPLWWDQFH RI WKH JODVV DQG WKH HIILFLHQF\ RI VRODU V\VWHP >@>@ )RU WKH VHPLFRQGXFWRU PDQXIDFWXULQJ D VPDOO DPRXQW RI GXVW PD\ GHVWUR\ WKH LQWHJUDWHG FLUFXLW ,Q VRPH PDQXIDFWXULQJ LQGXVWULHV VXFK DV IRRG PHGLFLQH DQG SHWURFKHPLFDO LQGXVWU\ GXVW GHSRVLWLRQ LQ WKH PDQXIDFWXULQJ SURFHVV ZRXOG DIIHFWV WKH TXDOLW\ RI SURGXFWV DQG FDXVH SRWHQWLDO GDQJHU 7KHUHIRUH GXVW UHPRYDO WHFKQRORJ\ QHHG WR EH ZLGHO\ DSSOLHG LQ PDQ\ LQGXVWULHV.

  • 'HSRVLWLRQ FKDUDFWHULVWLF RI VLQJOH SDUWLFOH ZHUH LQYHVWLJDWHG LQ WKH VWXG\ 7KH FRPSXWDWLRQDO FRQGLWLRQ FDQ EH VHHQ LQ )LJ 3DUWLFOH HQWHUV WKH KRUL]RQWDO SLSH ZLWK D FHUWDLQ LQLWLDO YHORFLW\ DQG WKHQ WKH PRWLRQ VWDWHV ZRXOG EH FKDQJHG GXH WR WKH DLU GUDJ IRUFH DQG JUDYLW\ )LQDOO\ WKH SDUWLFOH ZRXOG FROOLGH ZLWK WKH VXSHU K\GURSKRELF VXUIDFH 7KH YHORFLW\ DQG KHLJKW RI WKH SDUWLFOH ZLOO EH UHYHDOHG LQ WKH VLPXODWLRQ

  • PRGXOH 7KXV WKH SDUWLFOHV ZLWK ODUJHU

Read more

Summary

Introduction

$LUERUQH GXVW GHSRVLWLRQ RQ WKH VXUIDFHV RI HQHUJ\ GHYLFHV ZRXOG FDXVH VHULRXV SUREOHPV LQ RXU GDLO\ OLIH )RU H[DPSOH JODVV LV ZLGHO\ XVHG LQ VRODU V\VWHP WR SURWHFW WKH LQWHUQDO HTXLSPHQW 7KH VSHFWUDO WUDQVPLWWDQFH RI WKH FRYHULQJ JODVV FDQ VLJQLILFDQWO\ LQIOXHQFH WKH 39 RXWSXW SRZHU HIILFLHQF\ >@ +RZHYHU GXVW GHSRVLWLRQ RQ WKH VRODU FRYHULQJ JODVV FRXOG UHIOHFW DQG DEVRUE WKH VXQOLJKW ZKLFK ZRXOG JUHDWO\ UHGXFH WKH WUDQVPLWWDQFH RI WKH JODVV DQG WKH HIILFLHQF\ RI VRODU V\VWHP >@>@ )RU WKH VHPLFRQGXFWRU PDQXIDFWXULQJ D VPDOO DPRXQW RI GXVW PD\ GHVWUR\ WKH LQWHJUDWHG FLUFXLW ,Q VRPH PDQXIDFWXULQJ LQGXVWULHV VXFK DV IRRG PHGLFLQH DQG SHWURFKHPLFDO LQGXVWU\ GXVW GHSRVLWLRQ LQ WKH PDQXIDFWXULQJ SURFHVV ZRXOG DIIHFWV WKH TXDOLW\ RI SURGXFWV DQG FDXVH SRWHQWLDO GDQJHU 7KHUHIRUH GXVW UHPRYDO WHFKQRORJ\ QHHG WR EH ZLGHO\ DSSOLHG LQ PDQ\ LQGXVWULHV.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call