Abstract
ABSTRACTWax deposition is a frequent problem in oil pipelines and down-stream industries. Correct prediction of wax formation conditions is required to prevent this phenomenon. In this study, wax appearance temperature (WAT) of 12 Iranian oil and condensate samples were measured using viscometry data and differential scanning Calorimetry (DSC) analysis. Also, a new empirical correlation and intelligent artificial neural network (ANN) model were developed to estimate wax disappearance temperature (WDT) of crude oils. Specific gravity, pressure, and molecular weight of oil sample were used as input variables for these models. The ANN model was trained using different hidden neurons and training algorithms. Experimental measurements studies were used for validation of the new correlation. Comparing the results indicated that the ANN model has 0.27% error while most thermodynamic models have an average error of 0.35% to 2.19%. Also, the proposed correlation can predict WDT with good accuracy and minimum input data. Results show that this correlation has a maximum error of 1.16% for 310 published experimental data and 1.19% for 9 Iranian samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.